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The ar t ic le  d i scusses  the se l f - s imi la r  problem of the motion of a spherical  piston in a me -  
dium with "dry" fr ict ion and the differential connection between the f i rs t  invariant  of the 
s t ress  tensor  and the second invariant  of the tensor  of the deformation rates .  Fo r  the case 
of flow with a shock wave, the method of a s tat ionary wave is used to obtain the required 
relationships at a s trong discontinuity. It is  disclosed that the velocity of the piston, as 
well as the relationship between the cultivation coefficients and the dry  friction, are  de te r -  
mined by the smoothness of the friction. 

Art ic le  [1] descr ibes  models of loose soils, in which the second invariant  of the deviator of the s t r e ss  
tensor  T 2 is connected ~x4th the p res su re  by the relationship 

VY~ = +- ~p (1) 

where z is the coefficient of dry friction, and the sign is selected depending on the sign of the second in- 
var iant  of the deviator  of the tensor  of the deformation rates T 2. Such models a re  part ial  eases of models 
of plastic bodies and are  called models of media with dry friction. The condition of a hyperbolic charac-  
t e r  of the sys tem of equations of motion imposes  l imitations on the possible values of the coefficient of 
dry friction [~[ < 3/4. 

To determine the p ressure ,  we must  introduce into the hydrodynamics an additional relationship, 
analogous to the relationship Pe =f(P)"  With the motion of a soil, in distinction from the motion of liquids, 
a change in the p res su re  may take place not only due to a change in the density, but also as a result  of a 
r ise  in the shear  deformations.  Similar models are  proposed in [2-4]. In these models,  the increment  of 
the p ressu re  is represented  in the form of the sum of two te rms ,  the f i rs t  of which ref lects  the hydrostat ic  
compression,  and the second, the change in the p res su re  due to a change in the shear  deformations 

dp ---- dph + dp~, dp~ = Fdp (2) 

dp~ = FVq~}" (p, O)]/~dt  

The cultivation function ~(p, p) mus t  sat isfy a number  of conditions: 1) the function q(p,  p) must  be 
of constant sign; 2) the sys tem of equations of motion and the equations of state (1), (2) must  have real  
charac te r i s t i cs .  Since the presence  of real  charac te r i s t i c s  is connected with the existence of a finite rate 
of propagation of small  per turbat ions in the medium, which is equal to 

= F (1 ___~ qtF (p, 9)) (t ~--~---Y' 4 x) (3) a 2 

then, the cultivation function must  sat isfy the inequality 

1 + qW (p, p ) ~ 0  

The cultivation function can be chosen by many methods.  

Specifically, it can be represented  in two forms:  
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V (p,  O) = g o  ---= eonst,  
, 1 

00>0" 

To bring out the effect  of cultivation on the form of the shock adiabatic curve,  on the prof i les  of the 
veloci t ies  and the p r e s s u r e s ,  and on the qualitative picture of the flow, we shall use an a rb i t r a ry  way of 
wri t ing the function ~(p, p). As an i l lustrat ion of the resul ts ,  we take the cultivation function ~,(p, p) in the 
fo rm g~ =~'0- Such a choice of the function q~(p, p) does not limit the resul ts  obtained, but considerably s im-  
plifies the proof  and the computations.  Cases  where the charac te r  of the cultivation function affects the 
conclusions will be stipulated specially.  

and the equations of state in a spherical  sys tem of coordinates  assume the The equations of motion 
form 

a .  ou I o~ ~ + 2 (C - ~)  (4)  
0-7- + U-~r = --U -g7 7 
Op Op Ou 2up 
a--7- + u -~r + p -gT-r + --7- = 0  

~ =  _+• p > O  

o .  , Op = F ( op + u op . , o .  ~ ) 
--g'i'- ~ u "~"r -Yi" --gi- @ q~F (p '  PI P l -~'r - - - - / -  

V = or : 

The equations of motion of a friable medium with the equation of state (4) must  be satisfied by the 
relat ionships at the front  of the shock wave~ While the integrals  of the conservation of mass  and momen-  
tum immedia te ly  give two of the required relat ionships,  due to the nonholonomic cha rac te r  of Eq. (2), the 
third equation at the front of the wave can be obtained by the examination of the s t ruc ture  of a plane s ta-  
t ionary  wave, propagating along a friable viscous medium, under the assumption that inside a transit ional  
layer ,  simulating a shock wave, the previous equations of state are  retained. The s t ruc ture  of shock waves 
for different equations of state of the soil are  d iscussed in [5, 6] by s imi la r  methods. 

The equations of motion of a plane one-dimensionN flow of a viscous friable medium, in Lagrangian 
coordinates ,  have the form 

o:- ou o,, V o O ( : ~ s )  
0"-'7 = Vo -~x ' o--i- = 

zx  = _ p + 1 / ~ ,  p = _ i/,~ (zx  + 2~v) 

2 - = •  
Op .= F / OV Vo ) 
o, 

S = - -  v go Ou 
V Ox 

(5) 

Here V is the specific volume; p is the density; u is the velocity; ~x and ~Y is the s t ress ;  p is the 
p re s su re .  

Considering a s teady-s ta te  flow, reflect ing the motion of a shock wave with the velocity c along a 
quiescent medium with p =P0 and P0 = 0, introducing the variable w =x - ct, we t r ans fo rm sys tem (5) to the 
fo rm 

dV du 
- -  c ~ = go  ~ (6)  

d u  ( 4 ) dp d,.q 
- -  c -T~-w = - -  V o i - - - - g - •  -~-w - -  V o -T~w 

,zp P {c av dv ) 
- -  c-7b-~ = Vr  \ ~ -  q~(P,  P) c~'Tb-~ 

g 

�9 Ou  = sign (~-t) = s,gn(-~-) 
Let  M =vo- i c  be the flow of m a s s  through an a r b i t r a r y  plane; integrat ing the f i r s t  two equations in 

(6), we obtain 

M V  + u = M V  o - c ,  M u  - -  ( t  - -  4/3x ) p - -  S = - - M e  

The third relat ionship is the differential equation, 
dp F 

: ~ r  - -  -v~- (i - -  q ~  (p, p)) (7) 
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Fig. 1 

Integrating this equation gives a third relationship, analogous to the 
Hugoniot relationship for isothermal gases, and connecting the pressure and 
the specific volume at the front of the wave p=f(V). The form of the func- 
tion f(V) depends essentially on the form of the cultivation function ~(p, p). 
Equation (7) is integrated taking account of the sign of the derivative 0V/0t at 
the front of the wave. For �9 =~0 it can be shown that the value of V decreases 
monotonically, ~ =-i, and Eq. (75 assumes the form 

dp F 
d--V = -- -V -r + q~0) (S) 

It can be shown that for the cultivation function qr(p, p) = 1 - ( p *  +F- lp )p -1  
the conclusion with respec t  to the monotonicity of the density at the front of 
the wave is valid. 

The form of relat ionship (8) does not depend on the form of the viscosi ty introduced S. 

The s t ruc tu re  of the shock wave is determined by solution of the equation 

31 ~ (Vo -- V) -- (1 -- %~) p -- S = 0 
( ~, ) c dV 

M ~ (Vo - -  V) - -  l - -  -5- u / (V) + ~ "-U ~ = 0 

With w - -  i % d V / d w ~  0, and the relationship connecting the velocity of the shock wave with the spe-  
cific density at the front  of the wave assumes  the form 

M 2 (Vo  - -  V)  ---- ( l  - -  ' l ax )  ] (Y)  (95 

For  the selected functions $(p, p) = ~0 and F = cons~, the funetionf(V) has the fo rm 

(105 / ( v ) = F  

The derivat ive f , >  0 and Eq. (9) have two roots,  under the condition that 

M ~ > F ~ ( t  + qW~ 3 - - - v - ~ -  

- -  y u  ] - -  

c 2 ~ ao~ c ~ <:~ aa a 

Subscript  1 re la tes  to the state behind the front  of the wave. Thus, the shock wave must  move with 
respec t  to the mass  ahead of the front with a supersonic  velocity, and, with respec t  to the mass  behind the 
front, at a subsonic velocity. 

Fo r  q~(p, p) = l - ( p *  +F- lp )p  -l ,  integration of Eq. (7) gives 

With q = 0, this relationship, like relationship (105, gives the condition p =F(p  - p 0  ) for  non_friable 
media; with q ~ 0, with large compress ions ,  Eq. (11) assumes  the form 

p = F (p - -  p*) 

F o r  this cultivation function, the conclusion with respec t  to the relationship between the velocity of 
the shock wave and the veloci t ies  of sound before and af ter  the shock wave, for  ,I,(p, p) =,I,0, is also valid. 

F igure  1 gives curves of p = f ( p )  for  nonfriable media (1), for  a medium with the cultivation function 
~I, = ~I, 0 (25, and for a medium with the cultivation function ,I,(p, p) = [1 - (p* + p / F )  p-l] (35. The s t ra ight  line 4 
cor responds  to the equation p = F ( p  =p*). 

Let us consider  the problem of the motion of a spherical  piston in a friable medium, descr ibed by 
the equations of state 

~ r  5a 
.~ =up ,  •  
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Fig. 2 

The piston s tar ts  its movement  f rom the origin of coordi-  
nates and moves with the constant velocity Up. The unperturbed 
medium is charac te r i zed  by a density p =Po,  a p re s su re  p = 0, and 
a veloci ty u=0.  Analysis of the dimensional pa r ame te r s  de te r -  
mining the problem shows that the motion of the piston is sel f -  
s imi lar .  

Introducing the se l f - s imi la r  var iables  

4 3 
P = 4~  - -  - - ~ <  -2~),  ~ < 0  R = pp0 -~, ppo-lF -t, c~ = (1 

\ 

and t ransforming  t~e s tar t ing equations of motion and s ta te ,  we obtain 

dUd...~ (U - -  )~) -~ R "d'~ ~--- ~ dP u P  "~dR (U - -  ~) "Jr R d'~ "-'~" - -  2UR 

dP ~- ( u  - )~) + R ( i  + q'F (p ,  R)) ~ r  - (2 - q'~~ (P,  R)) ~rn ~==  --Z- 

(12) 

The boundary conditions for the sys tem (12), corresponding to a constant velocity of the piston with 
k=Up [(1-4/3~) F]-t /2,  and to a state of res t  at infinity, have the form: U =k at the piston, U - - 0 ,  P - - 0 ,  
R ~  1 with k--* r Solving sys tem (12) with respec t  to the derivat ives  dU/dk, dP/dk,  dR/d~, we obtain 

dU A, dP A2 dR A3 
d-Z = ~ '  ~ -~=(u- -~ '  d~ =(U--~)~ (13) 
5, = (U -- ~) [(U -- X) ( z P R  -1 .l- U (2-- qW (P, R))I ~-~ 

As = - - ( U - - k )  I(V--)~) U R  (2 - -  qW (P,  R) )  + a P ( i  -}-qW (P, R))IX -x 

A3 ---- --[2 ( U  - -  )~)~ U R  - -  3 U R q W  (P,  R)  + (U - -  ~,) aP] ~-~ 
A = (U -- ~)' -- (i + q~ (P, R)) 

In accordance  with formula  (3), the dimensionless  velocity of the propagation Of smal l  per turbat ions 
is determined by the express ion  

a s = R ( t _ + q ~ ( p ,  R))  

To Eqs. (12) there  mus t  be added the conditions at a s t rong discontinuity. In se l f - s imi la r  variables  
these conditions assume the form 

R ( U - - ~ , ) = - - ) ~ ,  P + R U  (U - -  )~) = O, P = J (R) (14) 

For the previously chosen cultivation functions, the third relationship in (14) assumes the form, re- 
spectively, 

P = (R -- i) (i + ~o) (15) 

e = (R  - R * )  - ( t  - R * ) ,  R *  = p*.Oo-  ( 1 6 )  

The system of algebraic equations for determining the singular points of system (12) has the form 

AI = 0 ,  A s = 0, A s ~ 0, ( U - - ~ )  A = 0  (17) 

The condition U -  k=0 gives the singular points, determined by the system 

u = ~ ,  u B ~ ( P ,  R ) = 0  

Let U ~ k. In this case, multiplying the f i rs t  equation by - a P ,  the second by U - k, and combining 
them, we obtain the third equation f rom (17). Analogously, we obtain the resul t  that the fourth equation in 
(17) is a consequence of the f i r s t  two. Thus, with U s  k, the sys tem for determining the singular points 
a s sumes  the form 

( u - ~ ) ~ - l - q ~ ( p ,  R ) = o  
a ( V  - -  ~) P -}- U R  (Z - -  q ~  (P,  R)) ~-0 

Let us consider  the behavior of the integral  curves of the sys tem in the neighborhood of the singular 
point U = 0, 1 ) =0, R = 1, k =X C = [ l + q ~  (0, 1)] 1/2. In accordance with [7], we consider  a system of l inear dif- 
ferential  equations, obtained f rom sys tem (12). Defining S = R - 1 ,  6 =X-X C, we obtain 
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_ _  ~ .  d P  
dU -- AU + alcP, h? = -- lcAU + a~c~'P 
d~ 
dS .4 d6 
aT -~ -- ~ U + aP, ~ = 2kc~U -- ~cBS -- 2kc~6 -- kcDP 

o~F (o, ~) a~ (o, l) 
A = 2 - - q ~ ( 0 , 1 ) ,  B-- - - - -q  "'f-'5iU--' D-= - - q  O~P 

The f i r s t  two equations can be solved independently of  the remaining ones ~. 

(~'0, P -~ C1 ~ -5 C~kc exp (~) U Ct + C, 8 X p  

where ~ is a root  of the cha rac te r i s t i c  equation ~2+(A-OZkC 2) ~ = 0, ~ = OZlc2-A. To consider  t r a jec to r ies  
which enter  into a singular point, we se t  C 1 = 0. Since ~ < 0, the t r a j ec to r i e s  enter  into a singular point 
with r--~ ~. 

Substituting the express ions  obtained for U and P into the remaining equations, integrat ing them, and 
discarding solutions which do not pass through a singular point, we obtain (for } + 2XC 2 ~ 0) 

U --- C~exp (~), p = C2~cexp (~), S = C~,c -1 exp (~) 

6 = Ca (~ + 2)~c2) -~ ((2 --  D) )~c 2 -- B) exp (~) + C~exp (--22~c2~) 

The cha rac t e r  of the integral  curves  depends on the sign of the quantity ~ + 2kC 2. 

Let  ~ + 2kC 2 < 0. We have 

exp (~) = C.Z1U 

6 = ((2 - -  D) kc ~ --  B)(~ + 2~c*)-~U -k CA (UC(~) -2~cv~ 

Since 2kC2+~ <0, then with CA :/= 0 (d6 / dU)Iu~--+ co . This means that all the t ra jec tor ies ,  with the 
exception of one, en ter  a s ingular  point with a zero  slope. The solution with C 4 =0 de termines  the second 
separa t r ix ,  enter ing the s ingular  point with the slope 

d6 (2 - -  D)  kc~ - -  B 

7U : '~, + 2~c~ 

Such a behavior of the trajectories in the neighborhood of the singular point is also characteristic 
for friable media without cultivation [8]. The values C2> 0 give trajectories at which U > 0, P> 0, R > 0, i.e., 

they correspond to physically possible states. 

We shall show that trajectories which are a continuation of these solutions in the neighborhood of 
the singular point k=k C are physically possible, i.e., along them U>0, P>0, R> 0 up to intersection with 
the straight line U =X. Thus, we shall demonstrate the assertion that the motion of a piston in a friable 
medium with cultivation can take place without the formation of shock waves or of weak discontinuities. 

We take the cultivation function in the form 9(P, R) =~0 o Inthis case, since dU/dk< (~ dP/dk< 0inthe 
neighborhood of the singular point X=XC , then A <0 and the signs of the derivatives du/dk and dP/d/are 
determined by the signs of A I and zX 2. If U > 0, P > 0, then A I < 0, A 2 < 0 and, consequently, along all the tra- 
jectories, dU/dk < 0, dP/dl < 0. This means that the values of the velocity and the pressure rise mono- 
tonically from the front of the perturbation toward the piston. We shall show that R> 0. In the neighbor- 
hood of a singular point, dR/dk < 0, R> 0 and, consequently, if R reverts to zero at the point k=k *, then 

(dR/dk)]X=~. > 0. But from (13) it follows that 

d~/d~ = --  aP/k* h ~j. 0 

i .e . ,  R does not r eve r t  to zero.  

The profi le of R is essent ia l ly  non_monotonic. This follows f rom the fact  that dR/dX<0 in the neigh- 
borhood of a s ingular  point, while, with motion t o w a r d t h e  piston, d R / d k - -  + oo. 

The conclusion with respec t  to the existence of continuous solutions, the monotonic charac te r  of the 
prof i les  of U and P, and the nonmonotonic charac te r  of the profile of R, is valid also for  a cultivation func- 
tion of the form �9 = 1 - ( p *  + p / F )  p-1 and �9 = 1 - p * p  -1. 

The solution entering a s ingular  point with the slope [ ( 2 - D ) k c 2 - B ]  �9 (~ + 2kC2) - i  cor responds  to flow 
conditions with a weak discontinuity,  propagating ahead of the piston, and, with i ts  in tersect ion with the 
s t ra ight  line U =k, de termines  the limiting veloci ty of the piston Up*, up to which continuous flow condi- 
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l i o n s  a r e  p o s s i b l e .  Wi th  Up > Up*, the  only p h y s i c a l l y  p o s s i b l e  t r a j e c t o r y  
i s  a t r a j e c t o r y  connec t ing  the po in t  U =X wi th  s o m e  po in t  on the  shock  

w a v e .  

We s h a l l  show tha t  a long  such  t r a j e c t o r i e s  A < 0 and,  consequen t ly ,  
the  p r o f i l e s  of U and P r i s e  m o n o t o n i c a l l y  wi th  m o t i o n  a w a y  f r o m  the 
shock  wave  t o w a r d  the  p i s ton .  The  d e t e r m i n a n t  A at  the  p i s t o n  i s  the  d i f -  
f e r e n c e  be tween  two v e l o c i t i e s :  the  v e l o c i t y  of the  shock  wave  wi th  r e -  
s p e c t  to  the  m e d i u m  behind the  f r o n t  and the v e l o c i t y  of sound  behind the 
f r o n t  l + q ' I ' ( 0 ,  1). I t  has  been shown e a r l i e r  t ha t  t h i s  d i f f e r e n c e  i s  n e g a -  
t i ve .  The  v a l u e s  of A t and A 2 a r e  p o s i t i v e  and,  c o n s e q u e n t l y ,  a n a l o g o u s l y  
to the  e a s e  of con t inuous  flow, the  p r o f i l e s  of U and P a r e  mono ton i c .  

L e t  us  c o n s i d e r  the  p r o f i l e  of the  d e n s i t y .  I t  fo l lows  f r o m  (14) tha t  
a t  the  shock  wave  

~. = V ' m ( R ) / ( R  - -  1), U = I / (R  - -  l ) / ( R ) m  

A~ = - -  ~--[(2 - -  a ) / (R)  - -  3qU~(P,  R ) ( R  - -  I )R  l 

F o r  q ~ ( P ,  R) = ~0 and f (R) = (1 +'I" 0) (R - 1), we obta in  

As R - -  t [(2 - -  a) (l + 'Fo) - -  3~'oR] 

Wi th  R > B* = ~/3(2 - -  c~)(l + ~g0)~go -1 , behind the f ron t  of  the  shock  

wave ,  the  d e n s i t y  s t a r t s  to fa i l .  F o r  shock  w a v e s  of s u f f i c i e n t l y  g r e a t  i n -  
t e n s i t y ,  the  p r o c e s s  of  cu l t i va t i on  i s  so c o n s i d e r a b l e  tha t  i t  l e a d s  to a 
d r o p  in  the  d e n s i t y  i m m e d i a t e l y  behind the f r o n t  of the shock  wave .  Le t  
us  e v a l u a t e  the  l o w e r  bounda ry  of the  change in  R*. Subs t i t u t ing  the  l i r a -  
i t i ng  v a l u e s  of cz and 'I'0( % = 0, @0 = 1) we f ind tha t  in th is  c a s e  R* > 4~. 

F o r  a cu l t i va t ion  funct ion of the  type  1 - (p* + p / F ) p  -1, i t  can be shown tha t  beh ind  the f r o n t  of a 
shock  wave  the d e n s i t y  a l w a y s  r i s e s ,  i . e . ,  behind  the  f ron t  of a shock  wave  A 3 <0.  

F i g u r e  2 g ives  p r o f i l e s  of the  v e l o c i t y  U ( c u r v e s  1 and 2), and of the shock  a d i a b a t i c  c u r v e  ( c u r v e  3) 
fo r  the c a s e  of con t inuous  and shock  cond i t i ons ,  wi th  a cu l t i va t ion  funct ion @='90=0~ and a va lue  of ~ = 
- 1 . 2 .  The  s a m e  f i g u r e  g ives  v e l o c i t y  p r o f i l e s  ( c u r v e s  4 and 5) fo r  the  s a m e  v a l u e s  of Up and ~ in  a m e -  
d i u m  wi thout  c u l t i v a t i o n  ('Y0 = 0). 

F i g u r e  3 g i v e s  c h a r a c t e r i s t i c  p r o f i l e s  of the  d e n s i t y  wi th  ,90=0.4 , o~ = - 1 . 2  ( c u r v e s  1 and 2), a s  wel l  
a s  the  c o r r e s p o n d i n g  d e n s i t i e s  f o r  a m e d i u m  wi thout  cu l t i va t ion  ( c u r v e s  3 and 4). 

In F i g .  4, c u r v e  1 c o r r e s p o n d s  to the  change  in the p r e s s u r e  a s  a funct ion of the  d e n s i t y  in  a m o v i n g  
p a r t i c l e  of a s u b s t a n c e  with  cu l t i va t i on  and c u r v e  2, to the change  in  the p r e s s u r e  with the  d e n s i t y  in  a 
m e d i u m  wi thou t  cu l t i va t i on .  

L e t  us  c o n s i d e r  the  c a s e  ~ + 2XC 2 > 0. The  so lu t ion  of the s y s t e m  of equa t ions  in the  n e i g h b o r h o o d  of 
the  s i n g u l a r  po in t  X =X C d e t e r m i n e s  6(U) in the  f o r m  

6 = ((2 - -  D) ~.c 2 - -  B) (~ + 2)~c2)-'U + C~(UC2-1) -2xc'/r 

dO 2~c C C-*xCt~ U -(2) c'~*~')/~ c~--0 = ((2 - -  D) )~c 2 - -  B) (~ + 2~c2) -1 - -  T 4 

S ince  2~C2+~ >0,  then wi th  C2~ 0, 

d 5  ., 
lim 3-0 = ((2 - -  D) )~c" - -  B) (~ + 2)~c2) -1 

F o r  the  cu l t i va t i on  func t ion  @(P, R) ='I~o, l i r a  d6 /dU > 0. Th i s  m e a n s  tha t  a l m o s t  a l l  the  t r a j e c t o r i e s  
e n t e r  a s i n g u l a r  po in t  wi th  the  p o s i t i v e  s l o p e  2~C2(~ + 2XC2) -1 and,  c onse que n t l y ,  m o t i o n  of the  m e d i u m  c a n -  
no t  t ake  p l a c e  wi thou t  a shock  wave .  F o r  cu l t i va t i on  func t ions  of o t h e r  k inds ,  the  ques t i on  of the p o s s i b i l i t y  
of f low wi thou t  a shock  wave  m u s t  be r e s o l v e d  anew in each  c a s e .  

In th i s  c a s e ,  the c h a r a c t e r  of the  f low does  not  d i f f e r  q u a l i t a t i v e l y  f r o m  the  shock  f low cond i t i ons  
u n d e r  c o n s i d e r a t i o n .  
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